# News aggregator

### Control.Parallel.Strategies

### Using m4 as a preprocessor

### Ask /r/haskell: Propagating constraints through GADT existentials

In a toy project I have a GADT for a syntax tree for Linear Algebra

data Exp :: * -> * -> * where Mul :: Exp (n,k) a -> Exp (k,m) a -> Exp (n,m) aI'd like to traverse this to compute different things, for instance to evaluate it, or produce GLSL code.

For different processing needs, I'd like to have different constraints on the type of labels (the (n,k), (k,m)... etc).

This is not possible because of the existential k in Mul, so I'd like some way of propagating a constraint through the GADT, without explicitly mentioning it on the constructors.

eval :: (Enum l) => Exp l a -> Int genCode :: (GetType l) => Exp l a -> Intbut where e.g. (Enum l) would reach also the sub-expressions. I tried playing around with Constraint kinds etc, but no solution so far has been really satisfactory. Any ideas?

submitted by ueberbobo[link] [3 comments]

### Edward Z. Yang: An Eq instance for non de Bruijn terms

**tl;dr** *A non-nameless term equipped with a map specifying a de Bruijn numbering can support an efficient equality without needing a helper function. More abstractly, quotients are not just for proofs: they can help efficiency of programs too.*

**The cut.** You're writing a small compiler, which defines expressions as follows:

Where Var is provided from some globally unique supply. But while working on a common sub-expression eliminator, you find yourself needing to define *equality* over expressions.

You know the default instance won’t work, since it will not say that Lam 0 (Var 0) is equal to Lam 1 (Var 1). Your colleague Nicolaas teases you that the default instance would have worked if you used a *nameless representation*, but de Bruijn levels make your head hurt, so you decide to try to write an instance that does the right thing by yourself. However, you run into a quandary:

If v == v', things are simple enough: just check if e == e'. But if they're not... something needs to be done. One possibility is to *rename* e' before proceeding, but this results in an equality which takes quadratic time. You crack open the source of one famous compiler, and you find that in fact: (1) there is *no* Eq instance for terms, and (2) an equality function has been defined with this type signature:

Where RnEnv2 is a data structure containing renaming information: the compiler has avoided the quadratic blow-up by deferring any renaming until we need to test variables for equality.

“Well that’s great,” you think, “But I want my Eq instance, and I don’t want to convert to de Bruijn levels.” Is there anything to do?

Perhaps a change of perspective in order:

**The turn.** Nicolaas has the right idea: a nameless term representation has a very natural equality, but the type you've defined is too big: it contains many expressions which should be equal but structurally are not. But in another sense, it is also too *small*.

Here is an example. Consider the term x, which is a subterm of λx. λy. x. The x in this term is free; it is only through the context λx. λy. x that we know it is bound. However, in the analogous situation with de Bruijn levels (not indexes—as it turns out, levels are more convenient in this case) we have 0, which is a subterm of λ λ 0. Not only do we know that 0 is a free variable, but we also know that it binds to the outermost enclosing lambda, *no matter the context.* With just x, we don’t have enough information!

If you know you don’t know something, you should learn it. If your terms don’t know enough about their free variables, you should *equip* them with the necessary knowledge:

and when you do that, things just might work out the way you want them to:

instance Eq DeBruijnExpr where D (Var v) n == D (Var v') n' = case (lookupN v n, lookupN v' n') of (Just l, Just l') -> l == l' (Nothing, Nothing) -> v == v' _ -> False D (App e1 e2) n == D (App e1' e2') n' = D e1 n == D e1' n' && D e2 n == D e2' n' D (Lam v e) n == D (Lam v' e') n' = D e (extendN v n) == D e' (extendN v' n')(Though perhaps Coq might not be able to tell, unassisted, that this function is structurally recursive.)

**Exercise.** Define a function with type DeBruijnExpr -> DeBruijnExpr' and its inverse, where:

**The conclusion.** What have we done here? We have quotiented a type—made it smaller—by *adding* more information. In doing so, we recovered a simple way of defining equality over the type, without needing to define a helper function, do extra conversions, or suffer quadratically worse performance.

Sometimes, adding information is the *only* way to get the minimal definition. This situation occurs in homotopy type theory, where *equivalences* must be equipped with an extra piece of information, or else it is not a mere proposition (has the wrong homotopy type). If you, gentle reader, have more examples, I would love to hear about them in the comments. We are frequently told that “less is more”, that the route to minimalism lies in removing things: but sometimes, the true path lies in *adding constraints.*

*Postscript.* In Haskell, we haven’t truly made the type smaller: I can distinguish two expressions which should be equivalent by, for example, projecting out the underlying Expr. A proper type system which supports quotients would oblige me to demonstrate that if two elements are equivalent under the quotienting equivalence relation, my elimination function can't observe it.

*Postscript 2.* This technique has its limitations. Here is one situation where I have not been able to figure out the right quotient: suppose that the type of my expressions are such that all free variables are *implicitly universally quantified.* That is to say, there exists some ordering of quantifiers on a and b such that a b is equivalent to b a. Is there a way to get the quantifiers in order *on the fly*, without requiring a pre-pass on the expressions using this quotienting technique? I don’t know!

### Turtle.Tutorial

### The Ambiguously-Typed Lambda Calculus

### Turtle.Tutorial

### Can anyone just start programming learning and career with Haskell and only that?

I got two books of Haskell which I hope you all know and have it. I have few old books of Haskell and Gofer concept ebooks too. Considering I don't know any programming experience. Can I start learning Haskell and lead a career into Haskeller. It sounds unrealistic or impractical. But how it can be done. What if I want to take this hard step. Guidance please. I have seen Haskell community is best and I got books, GHC installed in my machine. So I just have to use to for websites to be developed either with Yesod or Snap or Scotty is my aim at this moment to fetch a decent earning. May be more if well working with that.

submitted by Rohitk123[link] [25 comments]

### [ghc-devs] Delaying GHC 7.10.1 Release?

### Upcoming GHC version (was: Re: Drastic Prelude changes imminent)

### Drastic Prelude changes imminent

### Problem using Text.Regex on OS X.

### New gtk2hs 0.12.4 release

Thanks to John Lato and Duncan Coutts for the latest bugfix release! The latest packages should be buildable on GHC 7.6, and the cairo package should behave a bit nicer in ghci on Windows. Thanks to all!

~d